Total Synthesis of the Spiroketal Macrolide $(+)$ Milbemycin α_{1}

Steven V. Ley, ${ }^{*}$, a Andrew Madin ${ }^{b}$, Nathaniel J.T. Monck ${ }^{\text {a }}$
a) University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK.
b) Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, UK.

Abstract

The total synthesis of the antiparasitic spiroketal macrolide (+) milbemycin α_{1} is reported, following Julia sulfone anion coupling of the sulfone 3 with a northern hemisphere aldehyde 2 and subsequent functional group elaboration.

Owing to their biological activity and structural novelty the milhemycins and avermectins have become popular target molecules for organic synthesis. ${ }^{1,2}$ Over the years since their discovery we have delineated a versatile route to these compounds ${ }^{3}$ which culminated in the total syntheses of milbemycin $\beta_{1}{ }^{4}$ and avermectin $\mathrm{B}_{1 \mathrm{a}} .{ }^{5}$ Here we report a further application of these methods to the preparation of milbemycin $\alpha_{1} 6,2 \mathrm{f}$ another member of this important series of compounds.

Our previous studies in the area makes available suitable coupling components for this synthesis such as the "northern hemisphere" aldehyde 2^{4} and the allylic sulfone 3.5 The sulfone 3 requires no further protection but can be coupled via its trianion using three equivalents of t-butyllithium at $-78{ }^{\circ} \mathrm{C}$ followed by reaction with 2 to give the adduct 4 in 63% yield. ${ }^{7}$ Usual Julia reduction ${ }^{8}$ of 4 with sodium amalgam gave the E, E-diene 5. This product was benzoylated under standard conditions, then the primary hydroxyl group deprotected by treatment with tetra-n-butylammonium fluoride (TBAF) in THF to give 6 in excellent overall yield. The primary hydroxyl group in 6 was readily oxidised to the aldehyde 7 in 95% yield using oxalyl chloride activated dimethylsulphoxide ${ }^{9}$. While this aldehyde could be isolated it was unstable over time and we found it easier to execute the next steps of the synthesis as rapidly as possible. Oxidation of 7 with sodium chlorite under the Pinnick conditions ${ }^{10}$ proceeded satisfactorily to give an intermediate acid as in our previous syntheses which. after removal of the benzoyl groups with sodium methoxide in methanol and Yamaguchi macrolactonisation
with $2,4,6$-trichlorobenzoyl chloride ${ }^{11}$ and 4-pyrrolidino-pyridine gave 8 in 33% overall yield for the three steps (Scheme 1).

3

8

7

Reagents and conditions: (i) ${ }^{\mathrm{T}} \mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}, \mathrm{HMPA}, 10 \mathrm{~min} . ; 2,1 \mathrm{~h},(63 \%)$; (ii) $\mathrm{Na} / \mathrm{Hg}$, $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{THF} / \mathrm{MeOH},-40^{\circ} \mathrm{C}, 45 \mathrm{~min}$., (28%); (iii) $\mathrm{BzCl}, \mathrm{py} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DMAP}, 0^{\circ} \mathrm{C}$ to RT (95%); (iv) TBAF, THF, $0^{\circ} \mathrm{C}$ to RT (88%); (v) DMSO, (COCI) $2, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; $\mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C}$ to RT (95%); (vi) $\mathrm{NaClO}_{2}, \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}, \mathrm{Me} \mathrm{C}_{2} \mathrm{C}=\mathrm{CHMe}, \mathrm{KH}_{2} \mathrm{PO}_{4}, \mathrm{RT}$, in; (vii) $\mathrm{NaOMe}, \mathrm{MeOH}$; (vii) 2,4,6-trichiorobenzoyl chloride, 4-pyrrolidino-pyridine, $\mathrm{Et}_{3} \mathrm{~N}_{1} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta(33 \%$ from 7)

The final stages of the synthesis used a similar approach to that shown to be successful during our avermectin $\mathrm{B}_{1 \mathrm{a}}$ synthesis. Hence oxidation of the hydroxyl function at $\mathrm{C}-5$ with stoichiometric TPAP12 at room temperature gave the ketone which was selenated at $\mathrm{C}-4$ via the corresponding silyl enol ether using phenylselenenyl chloride to produce the selenides 9 and 10 in good yield and in a $1: 1$ ratio. These were not separated at this stage but were treated with $\mathrm{HF} /$ pyridine to remove the trimethylsilyl group from the $\mathrm{C}-7$ tertiary hydroxyl group to give 11 and 12 . The α-selenide 11 was then converted to the natural product by oxidation with 2 (phenylsulphony)-3-(p-nitrophenyl)oxaziridine to an intermediate selenoxide, subsequent synelimination and finally reduction of the resulting enone with $\mathrm{NaBH}_{4} / \mathrm{CeCl}_{3}$. This reaction gave the natural product 1 in 49% together with some (29%) of the exomethylene isomer 13 which was separated by chromatography. The synthetic sample of 1 was identical to an authentic sample of milbemycin α_{1} kindly supplied by the Sankyo company.

Scheme 2

Reagents and conditions: (i) TPAP, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT (79%); (ii) $\mathrm{ZnCl} \mathrm{I}_{2}, 30 \mathrm{~min}$.; TMSOTI, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}(85 \%)$; (iii) $\mathrm{PhSeCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}(9: 10,1: 1 ; 86 \%$); (iv) HF , py, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{RT}, 6 \mathrm{~h}(51 \%)$; (v) 2-(Phenyl sulphonyl)-3-(p-nitrophenyl)oxaziridine, $\mathrm{CDCl}_{3}, \mathrm{RT}, 2 \mathrm{~h}$; $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min} .(49 \%, 1,29 \%, 13)$

In summary we have shown that a common synthetic strategy developed by our group may be used to synthesize milbemycin α_{1}, in an analogous fashion to our earlier milbemycin and avermectin syntheses.

Acknowledgements

We thank the SERC, Pfizer Central Research and Rhonne-Poulenc Rorer (to NJTM) for financial support. We also acknowledge the British Petroleum endowment at Cambridge (to SVL).

References and footnotes

1) For a recent review on this area, see: (a) Davies H.G. and Green R.H.; Chem. Soc. Rev., 1991, 20, 211 and 271; (b) Crimmins M.T., Hollis Jr W.G., O'Mahony R.: "Studies in Natural Products Chemistry", Vol. I, Stereoselective Synthesis Part A, p 435; ed. Atta-ur-Raman, Elsevier, NY (1988); (c) Fisher M.H. and Mrozik H.; "Macrolide Antibiotics", p 553, ed. Omura S., Academic Press, Orlando (1985).
2) Milbemycin β_{3} : (a) Williams D.R., Bamer B.A., Nishitani K., Philips J.G.; J. An. Chem. Soc., 1982, 104, 4708; (b) Baker R., OMahony M.J., Swain C.J.; J. Chem. Soc., Perkin Trans. I, 1987, 1623; (c) Street S.D.A., Yeates C., Kocienski P.J.. Campbell S.F.; J. Chem. Soc., Chem. Comm, 1985, 1386; 1388; (d) Attwood S.V., Barrett A.G.M., Carr R.A., Richardson G.; J. Org. Chem, 1986, 51, 479; Attwood S.V., Barrett A.G.M., Carr R.A., Richardson G., Walshe N.D.A.; J. Org. Chem., 1986, 51, 4840; Milbemycin E: (e) Parmee E.R., Steel P.G., Thomas E.J.; J. Chem. Soc., Chem. Comm., 1989, 1250; Milbemycin α_{l} : (f) Hirama M., Noda T., Yasuda S., Ito S., J. Am. Chem. Soc., 1991, 113, 1830; Avermectin Bla: (g) Hanessian S., Ugolini A., Dube D., Hodges P.I., Andre C., Beaulieu P.; Pure Appl. Chem., 1987, 57, 299; Avermectin Bla (aglycone): (h) White JD., Bolton G.L.; J. Am. Chem. Soc. 1990, 112, 1626; Avernectin Ala: (i) Danishefsky S.J., Armstead D.M., Wincotl F.E., Selnick H.G., Hungate R.; J. Am. Chem. Soc., 1989, 111, 2967; Avermectin B1b (22,23 dihydro-aglycone) : (j) Ferezou J.P., Julia M., Liu L.W., Pancrazi A.; Synlett, 1991, 614.
3) Milbemycin β_{1} : Ley, S.V. and Armstrong A.; "Strategies and Tactics in Organic Synthesis", vol. 3, p237, ed. Lindiberg T., Academic Press, NY (1991).
4) Averntectin Bla : Ley S.V., Anthony N.J, Armstrong A., Brasca M.G., Clarke T., Culshaw D., Greck C., Grice P., Jones AB., Lygo B., Madin A., Sheppard R.N., Slawin A.M.Z., Williams D.I.; Tetrahedron, 1989, 45, 7161.
5) Ley S.V., Armstrong A., Diez-Martin D., Ford M., Grice P., Knight J.G., Kolb H.C., Madin A., Marby C.A., Mukherjee S., Shaw A.N., Slawin A.M.Z., Vile S., White A.D., Williams D.J., Woods M.; J. Chem. Soc., Perkin Trans. I, 1991, 667.
6) Mishima H., Ide J., Muramatsu S., Ono M.; J. Antibiot., 1983, 36, 980.
7) All new compounds gave satisfactory microanalysis and/or accurate mass data.
8) Julia M. and Paris J.-M.; Tetrahedron Lett., 1973, 14, 4833; For a review of sulfone-based olefination reactions, see: Kocienski P.J.; Phosporus and Sulphur, 1985, 24, 97.
9) Mancuso A.I. and Swern D.; Synthesis, 1981, 165.
10) Bal B.S., Childers W.E., Pinnick H.W.; Tetruhedron, 1981, 37, 2091; Taschner M.J., Kraus G.A.; J. Org. Chem., 1980. 45, 1175.
11) Managa I., Hirata K., Saeki H., Katsuki T., Yamaguchi M.; Bull. Chem. Soc. Ipn., 1979, 52, 1979.
12) Griffith W.P., Ley S.V., White A.D.; J. Chem. Soc., Chem. Comm., 1987, 1625: Griffith W.P., Ley S.V.; Aldrichimica Acta, 1990, 23, 13.
13) Data for macrolactone 8: $[\alpha] \mathrm{D})=+157$ (c. $1.0, \mathrm{Cffli}_{3}$) $u_{\max }(\mathrm{film}) 3460,2925,1701,1450,1378,1270,1222,1179,1056$, 997 and $962 \mathrm{~cm}^{-1} \delta \mathrm{H}(500 \mathrm{MHz}, \mathrm{CDCl} 3$, milbemycin numbering) $5.73-5.67(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9, \mathrm{H}-10), 5.48-5.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19) 5.35-$ $5.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0$ and $11.0, \mathrm{H}-11), 4.9 \mathrm{C}-4.95(1 \mathrm{H}, \mathrm{br}, \mathrm{I}, \mathrm{J} 7.6, \mathrm{H}-15), 4.75(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 7-\mathrm{OH}), 4.65-4.61(1 \mathrm{H}, \mathrm{obs} . \mathrm{d}, \mathrm{J} 14.4,1 \mathrm{xH}-$ 8α), 4.57-4.54 (1 H , obs. d, J 14.4. $1 \times \mathrm{H}-8 \alpha$), 3.81 (1H, d, J 3.8. H-6), 3.58-3.48 (2H, m. H-5, H-17), 3.29-3.23 (1H, dq, J 9.9 and $6.3, \mathrm{H}-25$), 2.53 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.0$ and $7.5, \mathrm{H}-2$), 2.43-2.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{j} 2$), 2.26-2.16 ($3 \mathrm{H}, \mathrm{m}$), 1.90-1.61 ($8 \mathrm{H}, \mathrm{m}$), 1.55-1.46 ($7 \mathrm{H}, \mathrm{m}$ inc. C14-Me at 1.51), $1.41-1.37$ (1H t, 111.9), 1.13 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{Me}) 1.08$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{Me}$), 0.99 ($3 \mathrm{H}, \mathrm{d} . \mathrm{J} 6.7$. Me), $0.88-$ $0.79(4 \mathrm{H}, \mathrm{m}$ inc. Me at $0.82, \mathrm{~d} . \mathrm{J} 6.5)$; m/z(El) $530\left(0.5 \%,\left[\mathrm{M}^{+}\right), 512\left(1.7,\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 496\left(0.6,[\mathrm{M}-2 \mathrm{H} 20]^{+}\right), 281(2.2\right.$, $\left.\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{5}\right]^{+}\right), 263\left(1.6,\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}\right]^{+}\right), 249\left(2.7,\left[\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2}\right]^{+}\right) 181\left(100,\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}\right]^{+}\right), 153\left(39.9,\left[\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}\right]^{+}\right)$and 129 $\left(10.5,\left[\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2}\right]^{+}\right.$) observed; $[\mathrm{M}]^{+} 530.3243, \mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O} 7$ requires $\mathrm{M}^{+} 530.3244$.
14) Synthetic milbemycin α_{1} was found to be identical to the natural product by i.I.c. (3 different solven systems) and by H.P.L.C. Data for synthetic milbemycin $\alpha_{1} 1: v_{\max }($ film $) 3462,2918,2849,1732,1462,1377,1261,1166,1120,1056 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, milbemycin numbering) $5.80(1 \mathrm{H}, \mathrm{dt}, 11.3$ and $2.4, \mathrm{H}-9) 5.73(1 \mathrm{H}, \mathrm{dd}, 14.3$ and $11.3, \mathrm{H}-10), 5.44-5.34$
 8α) 4.29 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{H}-5$), 4.10 ($\mathrm{H}, \mathrm{s}, \mathrm{C} 7-\mathrm{OH}$), 3.96 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2, \mathrm{H}-6$), 3.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$), $3.29-3.24(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-25$), $2.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12), 2.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2, \mathrm{C} 5-\mathrm{OH}), 2.24-2.18(3 \mathrm{H}, \mathrm{m}, 1 \mathrm{xH}-13,2 \mathrm{xH}-16), 1.99(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.1,4.9$ and $1.8, \mathrm{H}-20 \mathrm{eq})$. 1.89-1.79 ($5 \mathrm{H}, \mathrm{m}, \mathrm{IxH}-13, \mathrm{H}-18_{\mathrm{eq}}$, C4-Me at 1.87), $1.67(1 \mathrm{H}, \mathrm{m}), 1.55-1.47(6 \mathrm{H}, \mathrm{m}$, inc, C14-Me at 1.53$), 1.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 11.8$, $\mathrm{H}-20_{\mathrm{ax}}$), $1.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-24), 1.15(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{C} 25-\mathrm{Me}), 1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6 . \mathrm{C} 12-\mathrm{Me}), 0.87(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 12.0, \mathrm{H}-18 \mathrm{ax})$ and 0.82 (3H, d, J $6.6, \mathrm{C} 24-\mathrm{Me}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 528\left(14.8 \%,[\mathrm{M}]^{+}\right), 510\left(0.6,\left[\mathrm{M}_{-1} \mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 400\left(27,\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{8} 03\right]^{+}\right), 278\left(3,\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O} 5\right]^{+}\right), 261$ (2, $\left.\left[\mathrm{C}_{15} \mathrm{H}_{1704}\right]^{+}\right), 249\left(5,\left[\mathrm{C}_{16} \mathrm{H}_{250} \mathrm{O}_{2}\right]^{+}\right), 181\left(91,\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}\right]^{+}\right), 153\left(72,\left[\mathrm{C}_{10} \mathrm{H}_{19 \mathrm{O}}\right]^{+}\right), 129\left(10,\left[\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2}\right]^{+}\right)$; observed: $[\mathrm{M}]^{+} \mathbf{5 2 8 . 3 0 9 8}, \mathrm{C} 31 \mathrm{H} 44 \mathrm{O} 7$ requires $\mathbf{5 2 8 . 3 0 8 7}$.
